

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 MIT License

Copyright © 2017 Advanced Micro Devices, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 # hipBLAS
hipBLAS is a BLAS marshalling library, with multiple supported backends. It sits between the application and a ‘worker’ BLAS library, marshalling inputs into the backend library and marshalling results back to the application. hipBLAS exports an interface that does not require the client to change, regardless of the chosen backend. Currently, hipBLAS supports [rocBLAS](https://github.com/ROCmSoftwarePlatform/rocBLAS) and [cuBLAS](https://developer.nvidia.com/cublas) as backends.

Installing pre-built packages
Download pre-built packages either from [ROCm’s package servers](https://rocm.github.io/install.html#installing-from-amd-rocm-repositories) or by clicking the github releases tab and manually downloading, which could be newer. Release notes are available for each release on the releases tab.
* sudo apt update && sudo apt install hipblas

Quickstart hipBLAS build

Bash helper build script (Ubuntu only)
The root of this repository has a helper bash script install.sh to build and install hipBLAS on Ubuntu with a single command. It does not take a lot of options and hard-codes configuration that can be specified through invoking cmake directly, but it’s a great way to get started quickly and can serve as an example of how to build/install. A few commands in the script need sudo access, so it may prompt you for a password.
* ./install -h – shows help
* ./install -id – build library, build dependencies and install (-d flag only needs to be passed once on a system)

Manual build (all supported platforms)
If you use a distro other than Ubuntu, or would like more control over the build process, the [hipblas build wiki](https://github.com/ROCmSoftwarePlatform/hipBLAS/wiki/Build) has helpful information on how to configure cmake and manually build.

Functions supported
A list of [exported functions](https://github.com/ROCmSoftwarePlatform/hipBLAS/wiki/Exported-functions) from hipblas can be found on the wiki

hipBLAS interface examples
The hipBLAS interface is compatible with rocBLAS and cuBLAS-v2 APIs. Porting a CUDA application which originally calls the cuBLAS API to an application calling hipBLAS API should be relatively straightforward. For example, the hipBLAS SGEMV interface is

GEMV API

```c
hipblasStatus_t
hipblasSgemv( hipblasHandle_t handle,


hipblasOperation_t trans,
int m, int n, const float *alpha,
const float *A, int lda,
const float *x, int incx, const float *beta,
float *y, int incy );




```

Batched and strided GEMM API
hipBLAS GEMM can process matrices in batches with regular strides. There are several permutations of these API’s, the
following is an example that takes everything

```c
hipblasStatus_t
hipblasSgemmStridedBatched( hipblasHandle_t handle,


hipblasOperation_t transa, hipblasOperation_t transb,
int m, int n, int k, const float *alpha,
const float *A, int lda, long long bsa,
const float *B, int ldb, long long bsb, const float *beta,
float *C, int ldc, long long bsc,
int batchCount);




```

hipBLAS assumes matrices A and vectors x, y are allocated in GPU memory space filled with data. Users are
responsible for copying data from/to the host and device memory.

 ## Contribution License Agreement
1. The code I am contributing is mine, and I have the right to license it.

	By submitting a pull request for this project I am granting you a license to distribute said code under the MIT License for the project.

How to contribute

	Our code contriubtion guidelines closely follows the model of [GitHub pull-requests](https://help.github.com/articles/using-pull-requests/). This repository follows the [git flow](http://nvie.com/posts/a-successful-git-branching-model/) workflow, which dictates a /master branch where releases are cut, and a /develop branch which serves as an integration branch for new code.
	
	A [git extention](https://github.com/nvie/gitflow) has been developed to ease the use of the ‘git flow’ methodology, but requires manual installation by the user. Refer to the projects wiki

Pull-request guidelines
* target the develop branch for integration
* ensure code builds successfully.
* do not break existing test cases
* new functionality will only be merged with new unit tests

	new unit tests should integrate within the existing [googletest framework](https://github.com/google/googletest/blob/master/googletest/docs/Primer.md)

	tests must have good code coverage

	code must also have benchmark tests, and performance must approach the compute bound limit or memory bound limit.

StyleGuide
This project follows the [CPP Core guidelines](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md), with few modifications or additions noted below. All pull-requests should in good faith attempt to follow the guidelines stated therein, but we recognize that the content is lengthy. Below we list our primary concerns when reviewing pull-requests.

Interface
- All public APIs are C89 compatible; all other library code should use c++14

	Our minimum supported compiler is clang 3.6

	Avoid CamelCase

	This rule applies specifically to publicly visible APIs, but is also encouraged (not mandated) for internal code

Philosophy
- [P.2](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-Cplusplus): Write in ISO Standard C++ (especially to support windows, linux and macos plaforms)
- [P.5](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-compile-time): Prefer compile-time checking to run-time checking

Implementation
- [SF.1](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rs-file-suffix): Use a .cpp suffix for code files and .h for interface files if your project doesn’t already follow another convention

	We modify this rule:
- .h: C header files
- .hpp: C++ header files

	[SF.5](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rs-consistency): A .cpp file must include the .h file(s) that defines its interface

	[SF.7](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rs-using-directive): Don’t put a using-directive in a header file

	[SF.8](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rs-guards): Use #include guards for all .h files

	[SF.21](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rs-unnamed): Don’t use an unnamed (anonymous) namespace in a header

	[SL.10](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rsl-arrays): Prefer using STL array or vector instead of a C array

	[C.9](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rc-private): minimize exposure of members

	[F.3](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-single): Keep functions short and simple

	[F.21](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rf-out-multi): To return multiple ‘out’ values, prefer returning a tuple

	[R.1](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-raii): Manage resources automatically using RAII (this includes unique_ptr & shared_ptr)

	[ES.11](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-auto): use auto to avoid redundant repetition of type names

	[ES.20](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-always): Always initialize an object

	[ES.23](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-list): Prefer the {} initializer syntax

	[ES.49](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-casts-named): If you must use a cast, use a named cast

	[CP.1](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#S-concurrency): Assume that your code will run as part of a multi-threaded program

	[I.2](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Ri-global): Avoid global variables

 ### What is the expected behavior
-

What actually happens
-

How to reproduce
-

Environment
Hardware	description
-----	—–
GPU	device string
CPU	device string

Software | version |

-----	—–
ROCK	v0.0
ROCR	v0.0
HCC	v0.0
Library	v0.0

 resolves #___

Summary of proposed changes:
-
-
-

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

